- hyperbolic congruence
- мат.гиперболическая конгруэнтность
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Congruence subgroup — In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2x2 integer matrices of determinant 1, such that the off… … Wikipedia
Congruence (general relativity) — In general relativity, a congruence (more properly, a congruence of curves) is the set of integral curves of a (nowhere vanishing) vector field in a four dimensional Lorentzian manifold which is interpreted physically as a model of spacetime.… … Wikipedia
Congruence (geometry) — An example of congruence. The two figures on the left are congruent, while the third is similar to them. The last figure is neither similar nor congruent to any of the others. Note that congruence … Wikipedia
Hyperbolic motion — In geometry, a hyperbolic motion is a mapping of a model of hyperbolic geometry that preserves the distance measure in the model. Such a mapping is analogous to congruences of Euclidean geometry which are compositions of rotations and… … Wikipedia
Modular group — For a group whose lattice of subgroups is modular see Iwasawa group. In mathematics, the modular group Γ is a fundamental object of study in number theory, geometry, algebra, and many other areas of advanced mathematics. The modular group can be… … Wikipedia
Rindler coordinates — In relativistic physics, the Rindler coordinate chart is an important and useful coordinate chart representing part of flat spacetime, also called the Minkowski vacuum. The Rindler chart was introduced by Wolfgang Rindler. The Rindler coordinate… … Wikipedia
mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… … Universalium
Born coordinates — / ) are time like curves with fixed R .In relativistic physics, the Born coordinate chart is a coordinate chart for (part of) Minkowski spacetime, the flat spacetime of special relativity. It is often used to analyze the physical experience of… … Wikipedia
Triangle — This article is about the basic geometric shape. For other uses, see Triangle (disambiguation). Isosceles and Acute Triangle redirect here. For the trapezoid, see Isosceles trapezoid. For The Welcome to Paradox episode, see List of Welcome to… … Wikipedia
Systolic geometry — In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner, and developed by Mikhail Gromov and others, in its arithmetic, ergodic, and topological manifestations.… … Wikipedia
Tarski's axioms — Tarski s axioms, due to Alfred Tarski, are an axiom set for the substantial fragment of Euclidean geometry, called elementary, that is formulable in first order logic with identity, and requiring no set theory. Other modern axiomizations of… … Wikipedia